Tetrameric subunit structure of the native brain inwardly rectifying potassium channel Kir 2.2.

نویسندگان

  • K F Raab-Graham
  • C A Vandenberg
چکیده

Strongly inwardly rectifying potassium channels of the Kir 2 subfamily (IRK1, IRK2, and IRK3) are involved in maintenance and modulation of cell excitability in brain and heart. Electrophysiological studies of channels expressed in heterologous systems have suggested that the pore-conducting pathway contains four subunits. However, inferences from electrophysiological studies have not been tested on native channels and do not address the possibility of nonconducting auxiliary subunits. Here, we investigate the subunit stoichiometry of endogenous inwardly rectifying potassium channel Kir 2.2 (IRK2) from rat brain. Using chemical cross-linking, immunoprecipitiation, and velocity sedimentation, we report physical evidence demonstrating the tetrameric organization of the native channel. Kir 2.2 was sequentially cross-linked to produce bands on SDS-polyacrylamide gel electrophoresis corresponding in size to monomer, dimer, trimer, and three forms of tetramer. Fully cross-linked channel was present as a single band of tetrameric size. Immunoprecipitation of biotinylated membranes revealed a single band corresponding to Kir 2.2, suggesting that the channel is composed of a single type of subunit. Hydrodynamic properties of 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonic acid-solubilized channel were used to calculate the molecular mass of the channel. Velocity sedimentation in H2O or D2O gave a sharp peak with a sedimentation coefficient of 17.3 S. Gel filtration yielded a Stokes radius of 5.92 nm. These data indicate a multisubunit protein with a molecular mass of 193 kDa, calculated to contain 3.98 subunits. Together, these results demonstrate that Kir 2.2 channels are formed by the homotetrameric association of Kir 2.2 subunits and do not contain tightly associated auxiliary subunits. These studies suggest that Kir 2.2 channels differ in structure from related heterooctomeric ATP-sensitive K channels and heterotetrameric G-protein-regulated inward rectifier K channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mechanism for ATP-sensitive potassium channel diversity: Functional coassembly of two pore-forming subunits.

ATP-sensitive potassium channels are an octomeric complex of four pore-forming subunits of the Kir 6.0 family and four sulfonylurea receptors. The Kir 6.0 family consists of two known members, Kir 6.1 and Kir 6.2, with distinct functional properties. The tetrameric structure of the pore-forming domain leads to the possibility that mixed heteromultimers may form. In this study, we examine this b...

متن کامل

Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.

To understand the role of different K(+) channel subtypes in glial cell-mediated spatial buffering of extracellular K(+), immunohistochemical localization of inwardly rectifying K(+) channel subunits (Kir2.1, Kir2.2, Kir2.3, Kir4.1, and Kir5.1) was performed in the retina of the mouse. Stainings were found for the weakly inward-rectifying K(+) channel subunit Kir4.1 and for the strongly inward-...

متن کامل

Inhibitory interactions between two inward rectifier K+ channel subunits mediated by the transmembrane domains.

Inwardly rectifying K+ channel subunits may form homomeric or heteromeric channels with distinct functional properties. Hyperpolarizing commands delivered to Xenopus oocytes expressing homomeric Kir 4.1 channels evoke inwardly rectifying K+ currents which activate rapidly and undergo a pronounced decay at more hyperpolarized potentials. In addition, Kir 4.1 subunits form heteromeric channels wh...

متن کامل

Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3.

G-protein-gated inwardly rectifying K(+) (GIRK) channels are widely expressed in the brain and are activated by at least eight different neurotransmitters. As K(+) channels, they drive the transmembrane potential toward E(K) when open and thus dampen neuronal excitability. There are four mammalian GIRK subunits (GIRK1-4 or Kir 3.1-4), with GIRK1 being the most unique of the four by possessing a...

متن کامل

Heterologous expression of a glial Kir channel (KCNJ10) in a neuroblastoma spinal cord (NSC-34) cell line.

Heterologous expression of Kir channels offers a tool to modulate excitability of neurons which provide insight into Kir channel functions in general. Inwardly-rectifying K+ channels (Kir channels) are potential candidate proteins to hyperpolarize neuronal cell membranes. However, heterologous expression of inwardly-rectifying K+ channels has previously proven to be difficult. This was mainly d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 31  شماره 

صفحات  -

تاریخ انتشار 1998